安全公司报告
文库搜索
切换导航
文件分类
频道
仅15元无限下载
联系我们
问题反馈
文件分类
仅15元无限下载
联系我们
问题反馈
批量下载
(19)国家知识产权局 (12)发明 专利申请 (10)申请公布号 (43)申请公布日 (21)申请 号 202210471476.8 (22)申请日 2022.04.28 (71)申请人 中国华能集团清洁能源技 术研究院 有限公司 地址 102209 北京市昌平区北七家镇未来 科技城南区华能人才创新创业基地实 验楼A楼 (72)发明人 邸智 韦玮 黄思皖 王青天 曾谁飞 李小翔 (74)专利代理 机构 北京清亦华知识产权代理事 务所(普通 合伙) 11201 专利代理师 黄垚琳 (51)Int.Cl. G06T 7/00(2017.01) G06T 5/00(2006.01)G06V 10/774(2022.01) G06V 10/80(2022.01) (54)发明名称 光伏面板缺陷检测方法、 装置及计算机设备 (57)摘要 本申请提出一种光伏 面板缺陷检测方法、 装 置及计算机设备。 其中, 方法包括: 获取待检测光 伏面板的表 面图像; 将表面图像输入至最新迭代 升级后的缺陷检测模型, 获得待检测光伏面板的 缺陷检测结果; 基于对抗学习的方法, 获取表面 图像的无缺陷图像, 获取表面图像与无缺陷图像 之间的差值; 响应于差值超 过预设的阈值且缺陷 检测结果为无缺陷, 将表面图像作为目标图像放 入预设的数据库中; 响应于达到缺陷检测模型的 迭代升级条件, 从数据库中取出目标图像, 根据 目标图像及其标注数据确定新的训练样本, 并基 于新的训练样本对缺陷检测模型进行迭代训练。 本方案可以避免缺陷检测模型对于新的缺陷类 型的遗漏, 提升缺陷检测的准确性。 权利要求书2页 说明书11页 附图4页 CN 114897807 A 2022.08.12 CN 114897807 A 1.一种光伏面板缺陷检测方法, 其特 征在于, 包括: 获取待检测光伏面板的表面图像; 将所述表面图像输入至最新迭代升级后的缺陷检测模型, 获得所述待检测光伏面板的 缺陷检测结果; 所述缺陷检测模型已学习得到基于待检测光伏面板的表面图像预测所述光 伏面板的缺陷类型及定位的能力; 基于对抗学习的方法, 获取所述表面图像的无缺陷图像, 并将所述表面图像与所述无 缺陷图像进行比对, 获取 所述表面图像与所述无缺陷图像之间的差值; 响应于所述差值超过预设的阈值且所述缺陷检测结果为无缺陷, 将所述表面图像作为 目标图像放入预设的数据库中; 响应于达到所述缺陷检测模型的迭代升级条件, 从所述数据库中取出所述目标图像, 根据所述目标图像及其标注数据确定新的训练样本, 并基于所述新的训练样本对所述缺陷 检测模型进行迭代训练。 2.根据权利要求1所述的方法, 其特征在于, 所述基于对抗学习的方法, 获取所述表面 图像的无缺陷图像, 包括: 将所述表面图像输入至预设的生成器, 获得所述表面图像的无缺陷图像; 所述生成器 为已经过训练的生成式对抗网络中的生成器, 且所述生成器已学习得到基于光伏面板的表 面图像生成对应的无缺陷图像的能力。 3.根据权利要求1所述的方法, 其特征在于, 所述将所述表面图像与 所述无缺陷图像进 行比对, 获取 所述表面图像与所述无缺陷图像之间的差值, 包括: 分别将所述表面图像和所述无缺陷 图像进行灰度变换, 得到所述表面图像的第 一灰度 图和所述无缺陷图像的第二灰度图; 将所述第一灰度图中的每个像素点和所述第 二灰度图中对应的像素点进行比对, 获得 每个像素点之间差值; 根据每个像素点之间的差值, 确定所述表面图像与所述无缺陷图像之间的差值。 4.根据权利要求1所述的方法, 其特征在于, 所述根据所述目标图像及其标注数据确定 新的训练样本, 并基于所述 新的训练样本对所述 缺陷检测模型进行迭代训练, 包括: 确定所述目标图像的标注数据; 获取所述缺陷检测模型在最 新迭代训练时的第一训练样本; 将所述目标图像及其标注数据添加到所述第一训练样本中, 获得第二训练样本; 基于所述第二训练样本对所述 缺陷检测模型进行迭代训练。 5.根据权利要求1所述的方法, 其特征在于, 所述缺陷检测模型包括特征提取层、 特征 融合层和输出层, 所述将所述表面图像输入至最新迭代升级后的缺陷检测模型, 获得所述 待检测光伏面板的缺陷检测结果, 包括: 将所述表面图像输入至所述缺陷检测模型的特征提取层, 获得所述表面图像的第 一特 征图; 将所述第一特 征图输入至所述特 征融合层, 获得第二特 征图; 将所述第二特 征图输入至所述输出层, 获得 所述待检测光伏面板的缺陷检测结果。 6.一种光伏面板缺陷检测装置, 其特 征在于, 包括: 第一获取模块, 用于获取待检测光伏面板的表面图像;权 利 要 求 书 1/2 页 2 CN 114897807 A 2第二获取模块, 用于将所述表面图像输入至最新迭代升级后的缺陷检测模型, 获得所 述待检测光伏面板的缺陷检测结果; 所述缺陷检测模型已学习得到基于待检测光伏面板的 表面图像预测所述 光伏面板的缺陷类型及定位的能力; 第三获取模块, 用于基于对抗学习的方法, 获取 所述表面图像的无缺陷图像; 比对模块, 用于将所述表面图像与所述无缺陷图像进行比对, 获取所述表面图像与所 述无缺陷图像之间的差值; 放入模块, 用于响应于所述差值超过预设的阈值且所述缺陷检测结果为无缺陷, 将所 述表面图像作为目标图像放入预设的数据库中; 迭代训练模块, 用于响应于达到所述缺陷检测模型的迭代升级条件, 从所述数据库中 取出所述 目标图像, 根据所述 目标图像及其标注数据确定新的训练样本, 并基于所述新的 训练样本对所述 缺陷检测模型进行迭代训练。 7.根据权利要求6所述的装置, 其特 征在于, 所述第三获取模块具体用于: 将所述表面图像输入至预设的生成器, 获得所述表面图像的无缺陷图像; 所述生成器 为已经过训练的生成式对抗网络中的生成器, 且所述生成器已学习得到基于光伏面板的表 面图像生成对应的无缺陷图像的能力。 8.根据权利要求6所述的装置, 其特 征在于, 所述比对 模块具体用于: 分别将所述表面图像和所述无缺陷 图像进行灰度变换, 得到所述表面图像的第 一灰度 图和所述无缺陷图像的第二灰度图; 将所述第一灰度图中的每个像素点和所述第 二灰度图中对应的像素点进行比对, 获得 每个像素点之间差值; 根据每个像素点之间的差值, 确定所述表面图像与所述无缺陷图像之间的差值。 9.一种计算机设备, 包括存储器、 处理器及存储在存储器上并可在处理器上运行的计 算机程序, 其特征在于, 所述处理器执行所述程序时, 实现如权利要求 1至5中任一所述的方 法。 10.一种计算机可读存储介质, 其上存储有计算机程序, 其特征在于, 该程序被处理器 执行时实现如权利要求5中任一所述的方法。权 利 要 求 书 2/2 页 3 CN 114897807 A 3
专利 光伏面板缺陷检测方法、装置及计算机设备
文档预览
中文文档
18 页
50 下载
1000 浏览
0 评论
309 收藏
3.0分
赞助2.5元下载(无需注册)
温馨提示:本文档共18页,可预览 3 页,如浏览全部内容或当前文档出现乱码,可开通会员下载原始文档
下载文档到电脑,方便使用
赞助2.5元下载
本文档由 人生无常 于
2024-03-18 07:36:11
上传分享
举报
下载
原文档
(777.4 KB)
分享
友情链接
绿盟 IoT机顶盒恶意软件应急处置手册.pdf
WS 539-2017 远程医疗信息基本数据集.pdf
DB14-T 1822-2019 旅游景区安全评估规范 山西省.pdf
T-ZKJXX 00032—2023 长波接收机技术要求及测试方法.pdf
GM-T 0055-2018 电子文件密码应用技术规范.pdf
GB-T 25198-2023 压力容器封头.pdf
GB-T 13560-2017 烧结钕铁硼永磁材料.pdf
GB-T 3409.2-2016 大坝监测仪器 钢筋计 第2部分:振弦式钢筋计.pdf
GB-T 25808-2021 硫化黑2BR、3B 200%.pdf
GB-T 9439-2023 灰铸铁件.pdf
GB-T 11835-2016 绝热用岩棉、矿渣棉及其制品.pdf
GB-T 13916-2013 冲压件形状和位置未注公差.pdf
CSA 安全数据湖的敏捷数据原则.pdf
GM T 0009-2023 SM2密码算法使用规范.pdf
奇安信 2022医疗卫生行业网络安全分析报告.pdf
斯元商业咨询 网络安全科技供应链报告:厂商成分分析及国产化替代指南 2022.pdf
DB50-T 1279-2022 民用醇基液体燃料应用技术规程 重庆市.pdf
T-HAEC 003—2020 工程监理资料管理标准化与信息化工作指南 房屋建筑工程.pdf
GB-T 32182-2015 轨道交通用铝及铝合金板材.pdf
YD-T 3763.6-2021 研发运营一体化(DevOps)能力成熟度模型 第6部分:安全及风险管理.pdf
1
/
3
18
评价文档
赞助2.5元 点击下载(777.4 KB)
回到顶部
×
微信扫码支付
2.5
元 自动下载
官方客服微信:siduwenku
支付 完成后 如未跳转 点击这里 下载
站内资源均来自网友分享或网络收集整理,若无意中侵犯到您的权利,敬请联系我们
微信(点击查看客服)
,我们将及时删除相关资源。